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plotted together with the present one (dashed line) for 

m = 0, i, f, $. As regard to the steady state value, the numeri- 

cal factor 2(J3)/3 appears instead of 

CONCLUSIONS 

The integral method has been applied to the study of 

transient heat transfer to boundary layer flows with zero 

Prandtl number. Analytical solutions have been obtained 

in a very simple way for arbitrary potential flows and have 

been compared with Soliman<hambr6 [l] exact solution 

in the particular case of wedge flows. The overall accuracy 

of the obtained solution seems satisfactory and gives further 

confidence in the possibility of application of the integral 

method to this kind of time-dependent problem. (A similar 

conclusion was drawn by Stewartson [4] in the problem of 

the impulsive motion of a flat plate in a viscous fluid.) 
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NOMENCLATURE and 

departure from freezing temperature ; 
normalized temperature (B/B,): 

distance from fixed cooled surface ; 
normalized distance (X/X,) ; 
time ; 
normalized time (t/t,) ; 
representative temperature difference; 

final layer thickness or “active zone” depth ; 
characteristic time (pLXf!KB, or periodic time); 

normalized ice thickness ; 
specific heat at constant pressure; 

latent heat of fusion : 
ice density ; 

subject to suitable initial and boundary conditions: one of 

the boundary conditions has since been found to be in- 

correct. 

A regular perturbation expansion in Ste was then used 

for both the temperature 4(x, T, Ste) and interface location 

fl(z. Ste). For two particular surface temperature variations 

(sinusoidal and power law) the interface expressions took 

particular forms which, it has since been noticed. are each 

of the more general form 

thermal conductivity : 
Stefan number (C,B,/L). 

where 4’(r) is the particular surface temperature variation. 

This is clearly a very simple and convenient result and 

therefore it is worthwhile examining the problem to see 

whether the result applies to any other surface temperature 

variations and to ascertain the extent of the error incurred 

through the use of an incorrect boundary condition. 

IN A PREVIOIJS paper [l], a perturbation solution was 
developed for the formation of an ice layer at the edge of a 

semi-infinite domain of water, initially at the freezing point. 

and subject to a prescribed variation in surface temperature. 

In this form the problem was posed as the solution of the 

equations 

(1) 

(2) 

B(T. Ste) = /I(T, 0) 
[ 

1 + T 4’(T) + O(Ste? 1 

Taking 

4(X, t, Ste) = f Step q+, t), 
Al=0 

(3) 
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and 

it follows that 

But by virtue of equation (4) 

O,(B. T) = &(Bo, 7) + Ste P,(r) + O(Ste’) 

and hence if #@, X, Ste) = 0 

&(&I> 7) = 0 

(4) 

(5) 

The second of equations (5) differs from the earlier statement 

[l] which placed 4 #, z) = 0. With this exception, the solu- 

tion of equation (1) using equations (3) and (4) follows [l] 

exactly and leads to the temperature profiles 

and 

1 d+” 1 d 4” 
+_-x2___ _ x3 

2!+” dr 01 3!+“dr fi,, 

In the solution of equation (2) it is important to recognize 

that 

Hence equation (2) may be re-stated as 

(7) 

which are to be solved subject to BP(~) = 0. 

Equation (6) may be solved immediately giving 

&(r) = { - 2 [ 4’(r) dz}+. (8) 

Using the temperature profiles, equation (7) becomes 

the first term on the right-hand side of which has been 

added by virtue of the modification to equation (5). The 

solution of this non-homogeneous linear equation is readily 

found by re-writing it [using equation (S)] in the form 

dB, B, 9” B; d+” 

d& 8, -+-=5--- 64 d7 

which integrates to give 

But 

and hence 

/?,(T) = PO. 
6 

Therefore 

/KS, Ste) = PO(z) + Ste /I,(T) + O(Ste? 

= BCZ, 0) 
[ 
1 + f (f(T) + I 

and thus showing that the result holds for arbitrary excur- 

sions of the surface temperature. 

This simple result is especialb useful for ice-water systems, 

where Ste will rarely exceed unity since this would require 

temperatures lower than - 160°C or higher than 80°C 

neither of which are likely in the presence of ice under 

common conditions. Typically, Ste < 1 and therefore it is 

evident that corrections to fi(r, 0) will usually be small. 

One rather curious implication of the first order term 

is the fact that whenever 4”(z) passes through zero, the value 

of /?(r, Ste) at that time is given by p(r. 0) whether Ste is zero 

or not. As noted elsewhere [l] a sinusoidal variation of 

surface temperature leaves the maximum depth of the 

ice-water interface unaltered by the Stefan number. Ob- 

viously, this result would apply to any periodic variation 

in surface temperature. 

The requirement that the p-th component of the tempera- 

ture (and its gradient) at the interface should be dependent 

upon the Stefan number was ov.-rlookcd in [l]. Fortunately, 

this note reveals that the conclusions of [I] are unchanged 

and that the numerical error incurred in the temperature 
distribution given in [l] is very small. 
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